Spectroscopic Studies of Substituted Imidazole Complexes. I. Some Complexes of 2-Methylimidazole

D. M. L. Goodgame, M. Goodgame, and G. W. Rayner-Canham.

Received March 14, 1969

The preparations are reported of the following com*plexes of 2-methylimidazole* $(= L): ML₄X₂$ $(M =$ *Co;* $X = I$, NO_3 . $M = Ni$, $X = Cl$, Br, I, NO₃. $M = Cu$; $X = Cl$, Br , $M = Zn$; $X = NO_3$), *MLzXz (M = Co, Ni, Zn; X = Cl, Br, I, N03.* $M = Cu$; $X = Cl$, Br), NiLCl₂ and NiL_{3.5}I₂. Ma*gnetic susceptibility and electronic and low frequency (90-450 cm-') vibrational spectral measurements have been made, and the results are discussed and used to assign coordination geometries where possible.*

Introduction

As part of a program to elucidate the molecular and electronic structures of complexes of biologically important ligands, we have prepared and studied some complexes of 2-methylimidazole $(= L)$. A few of these compounds have recently been described,' but since our infrared measurements extend to lower frequency, and since we prefer different assignments for some of the electronic spectra, we report results for these compounds as well as for those which are new.

Experimental Section

All complexes were dried in vacuum over P_2O_5 . Analytical results (C, H, and N by the Microanalytical Laboratory, Imperial College) for all the compounds were good.

 $Col₄I₂$. 2-methylimidazole and $Col₂$. $6H₂O$ were mixed in 4: 1 mole ratio in ethanol. After evaporation to small bulk benzene was added until a cloudiness was observed. Deep purple crystals separated from the blue solution and were filtered off and washed with benzene.

 $Col₄(NO₃)₂$ (2 forms). Both forms of this compound were obtained from ethanolic solutions of the calculated quantities of 2-methylimidazole and hydrated cobalt nitrate. *Form A* was obtained as pink crystals on allowing a hot ethanolic solution to cool. After filtration they were washed with acetone and then ether. *Form B:* addition of dichloromethane to the ethanolic solution gave a dark red oil, which yielded purple crystals on storing at 0" for 2 days.

 (1) W. J. Eilbeck, F. Holmes, C. E. Taylor, and A. E. Underhill

(This preparation was found difficult to reproduce, form A or mixtures of A and B being frequently obtained).

 CoL_2X_2 (X = Cl, Br, or I). Hot acetone solutions of the cobalt halide and 2-methylimidazole were mixed in 1: 2 mole ratio and then filtered. Dichloromethane $(X = Cl or Br)$ or benzene $(X = I)$ were added until a cloudiness developed. Storage at 0°C for 24 hrs gave dark blue crystals which were collected and washed with acetone/dichloromethane $(X = Cl or Br)$ or acetone/benzene $(X = I)$.

 $ML_2(NO_3)_2$ (*M = Co or Ni*). 2-methylimidazole in acetone and the hydrated metal nitrate in 2,2' dimethoxypropane were mixed in 1.9: 1 mole ratio. The mixture was filtered and solvent was distilled off until an oil formed. This was separated and stored under benzene until it had crystallized. The solid was washed with benzene and then ether.

 $NiL₄X₂$ (X = Cl, Br, I, or NO₃). Hot ethanolic solutions of the appropriate nickel salt and 2-methylimidazole were mixed in 1: 4.4 mole ratio. In the case of the *iodide* addition of ether gave the yellow complex, which was recrystallized from acetone. The pale blue *nitrate* slowly precipitated on cooling the solution. It was washed with acetone and ether. The *chloride* and *bromide* separated as green crystals, along with a small amount of the inner complex $N_{\rm H}$ $N_{\rm H}$, $N_{\rm H}$ which was removed by recrystallizing $\frac{1}{2}$ $\frac{1}{2}$

 $NiL₂Cl₂$. Solid NiCl₂. $6H₂O$ was added to an acetone solution of 2-methylimidazole to give a $1:2$ mole ratio. The blue solution was boiled and filtered hot. Benzene was added until a cloudiness developed. The purple oil which separated on cooling crystallized during 24 hr to give a yellow solid. This was filtered off and washed with acetone and then ether.

 NiL_2X_2 ($X = Br$ or *I*). The appropriate 4:1 complex was heated to constant weight in vacuum at 120°C. The blue bromide and dark green iodide were very hygroscopic.

 $NiL_{3.5}I₂$. This purple compound was obtained by heating NiL₄I₂ to constant weight in vacuum at 75° C. Calcd. wt. loss for $Nil_4I_2 \rightarrow Nil_3,I_2$: 6.41%; wt. loss found 6.85%.

Anal. Calcd. for C₁₄H₂₁I₂N₇N_i: C, 28.04; H, 3.50; N, 16.35. Found: C, 27.89; H, 3.42; N, 16.19%. This preparation was not always reproducible in that sometimes the green 2: 1 complex began to form. If this occurred, the heating was stopped and the sample allowed to stand at atmospheric pressure until the green portion had changed to purple $(ca. 24 hr)$. Continuation of the heating process then gave only the purple compound.

NiLCl₂. Hydrated nickel chloride was refluxed with ethanol/2,2-dimethoxypropane for 15 min., and then a slight excess $(1.1: 1$ mole ratio) of 2-methylimidazole was added. The solution was evaporated to dryness and the residue was treated with successive portions of acetone, to remove $NiL₂Cl₂$, until the washings were colorless.

 CuL_4X_2 (X = Cl or Br). These were prepared as for their nickel analogs.

 CuL_2X_2 ($X = Cl$ or Br). These compounds precipitated as yellow-green (chloride) or red-brown (bromide) crystals on mixing solutions of the copper(H) halide and 2-methylimidazole in acetone (chloride) or ethanol (bromide).

 $ZnL₄(NO₃)₂$. Benzene was added to a hot acetone solution of zinc nitrate and 2-methylimidazole (in 1: 4.4 mole ratio) until the solution became cloudy. The colorless crystals which separated on standing were washed with ether and recrystallized from ethanol/benzene.

 ZnL_2X_2 . $(X = \mathbb{C}l, Br, I, or NO_3)$. These were prepared as for the cobalt analogs.

Physical Measurements. X-Ray powder photographs were taken on an Enraf-Nonius Guinier-De Wolff camera. The other measurements were carried out as described previously.2

Results and Discussion

We have obtained complexes of stoichiometry ML_4X_2 for all the metal ions Co^{2+} through Zn^{2+} , from solutions containing an excess of 2-methylimidazole. In contrast to imidazole, $2,3$ no evidence was obtained for the formation of 6: 1 complexes. This may be attributed to the increased steric hindrance by the methyl group. Complexes of 2: 1 stoichiometry were also obtained, more readily than the 4: 1 compounds in the case of cobalt and zinc.

Electronic Spectra and Magnetic Measurements. The room-temperature magnetic moments and diffuse reflectance spectral band energies of the complexes are listed in Table I.

The electronic spectrum and the low magnetic moment observed for [CoL4]I₂ both point to the presence of tetrahedral $Col²⁺$ ions in that compound. The ligand field strength of 2-methylimidazole $(A -$ 5250 cm⁻¹) is slightly greater than that of benzimidazole⁴ $(A - 5100 \text{ cm}^{-1})$ but weaker than that of imidazole itself⁵ (Δ = 5380 cm⁻¹) in tetrahedral compounds.

Two forms of $Col_4(NO_3)_2$ were obtained, one pink (form A), the other purple (form B). The spectrum of A is typical of a distorted octahedral configuration, (the ${}^{4}T_{2g}$ level shows a pronounced splitting).

Analytical Results

Rayner-Canham. Inorg. *Chem.,* 7, 2441 (1968). (1962). (A) W. J. Elibeck, F. Holmes, and A. E. Underhill, J. Chemi. Soc., Canadia Society, Dublin, April 1968.
(A) 757 (1967).

(2) D. M. L. Goodgame, M. Goodgame, P. J. Hayward, and G. W. (4) M. Goodgame and F. A. Cotton, I. Am. *Chem. Sm.,* 84, 1543 (3) W. J. Eilbeck, F. Holmes, and A. E. Underhill, 1. *Chem. Sot..* (5) W. J. Davis and I. Smith, Abstract 3.14, Annual Meeting of the

Table I. Diffuse Reflectance Spectra^a and Room-temperature Magnetic Moments of some 2-methylimidazole Complexes

At room-temperature unless stated otherwise. ^b 0.002 M in acetone. ^c Nominal 5 mole% in Ni. ^d Obeys Curie-Weiss Law 130.300°K with $\Theta = -27^{\circ}$. Cheves Curie-Weiss Law 80-300°K with $\Theta = -22^{\circ}$. *f* Spin-forbidden bands above 17 kK omitted.

The magnetic moment of A is in accord with the presence of six coordinate cobalt(II). T_{max} or six coordinate copality).

deduced from the evidence available. Its electronic deduced from the evidence available. Its electronic spectrum is very similar to that of $Col₄I₂$, but the relatively high magnetic moment (4.99 B.M.) is at variance with a tetrahedral ligand field. As discussed by Lions et al.,⁶ five coordinate cobalt(II) complexes with coordination geometries derived from the square pyramid can have electronic spectra closely resembling those expected for a tetrahedral ligand field (e.g. β -Co(paphy)Cl₂⁷), but may possess magnetic moments in the range commonly found for six coordinate cobalt(II) systems (even as high as 5.5 B.M. for $\left[Co\right>(C_6H_5)_2CH_3AsO\}_{4}ClO_4$ ClO_4 , H_2O). In view of the unusual geometry found⁸ for NiL₄X₂ $(X = Cl or Br)$ (discussed below) we suggest that form B of $CoL₄(NO₃)₂$ either contains five coordinate cobalt(II) or that one of the anions may be only weakly coordinated, so that the electronic spectral and magnetic properties resemble those of a truly five coordinate compound. Infrared spectral studies failed to resolve this problem as bands due to 2-methylimidazole prevented unambiguous assignment of the nitrate bands. are panos.
The compounds CoL X (X = Cl, Br, or I) are pseud-

does the compounds $\text{CO}L_2\Lambda_2$ ($\Lambda = \text{Cl}$, br, or 1) are pseudo-tetrahedral, and $CoL₂(NO₃)₂$ appears to be quite analogous to the corresponding imidazole complex.²

The electronic spectrum and magnetic moment of $NiL₄(NO₃)₂$ are as expected for an essentially octahedral geometry (in contrast to form A of CoL₄(NO₃₎₂ there was no detectable splitting of the ³T_{2g} or ³T_{1g}

(6) F. Lions, I. G. Dance, and J. Lewis, *J. Chem. Soc.* (A), 565 **(6) F. Lions, I. G. Dance, and J. Lewis,** *J. Chem. Soc.* **(A), 565

(8)** paphy = pyridine-2-aldehyde-2'- pyridylhydrazone
 (8) F. Akhtar, D. M. L. Goodgame, M. Goodgame, G. W. Rayner-

levels of the nickel ion from the room-temperature s versus or τ . Ctrum).
However, the spectra of the corresponding chloride

rowever, the spectra of the corresponding choride and bromide were quite different from that of the nitrate (Figure 1) and also from those of apparently similar compounds such as Nipy₄Cl₂.^{9,10} X-Ray work⁸ has shown that although the anions in NiL₄Br₂ are in trans-coordination positions the Ni-Br bond distances differ appreciably $(2.53 \text{ and } 3.57 \text{ Å})$, because of the steric influence of the methyl groups of the heterocyclic ligands, which, unexpectedly, do not adopt a staggered array. The chloride is isomorphous with the bromide. promiue.
These compounds represent and interesting situations

inese compounds represent an interesting situation in which the ligand fields are intermediate between the usual centro-symmetric, tetragonally distorted octahedral complexes $Ni(amine)AX_2$ and five coordinate

igure 1. Reflectance spectra of: A

(9) D. M. L. Goodgame, M. Goodgame, M. A. Hitchman, and M.
Weeks, *J. Chem. Soc.* (A) 1769 (1966).
(10) D. A. Rowley and R. S. Drago, *Inorg. Chem.*, 6, 1092 (1967);

Goodgame, Goodgame, Rayner-Canham) *Complexes of 2-Methylimidazole*

compounds with square pyramidal configuration. The compounds with square pyramidal configuration. The relatively high intensities of the spectral bands reflect the non-centrosymmetric (C_{4v}) environment of the nickel ion.

 $\frac{1}{100}$ Although the ligand field symmetry is known we are unable to make an unambiguous, complete assignment of the spectra. The band at 4.7 kK is clearly ${}^{3}B_{1} \rightarrow {}^{3}E^{a}$ (E^a and E^b refer to the lower and the higher orbital doublet terms derived from ${}^{3}F$), and the bands at 24.0 and \sim 20 kK are probably due to transition to ${}^{3}E(P)$ and ${}^{3}A_{2}(P)$ respectively. The three bands at 9 - 18 kK are less easily assigned. Three spin a_1 and b_2 are less easily assigned. In the spin t_1 towed bands are expected in this region, namely ransitions to the B_2 , A_2 (F), and E^* levels. From \mathcal{L} tampoint s calculations and earlier assignments \mathcal{L} present the spectra of square pyramidal nickel (11) com- α (F), α ₂ are expects α ² to be night in energy than ${}^{3}A_{2}$ (F),¹³ although the relative order of ${}^{3}A_{2}$ (F) and ${}^{3}B_{2}$ is less easily predicted. IS less easily predicted.

The intensity of the 14.5 KK band for $N1L_4X_2$ $(X = Cl or Br)$ suggests that this is ³E^b. The weaker bands at \sim 10 kK and 17 - 17.5 kK may both be transitions to the orbital singlet levels. It seems unlikely that ${}^{3}B_{2}$ would be as high as 17 kK, as this would imply a very strong in-plane field and there is no evidence for this from the $Ni-N$ bond length (2.14 Å) in NiL₄Br₂. Assignment of the band at \sim 10 kK to ${}^{3}B_{1}$ \rightarrow ${}^{3}B_{2}$ would then require either ${}^{3}A_{2}$ $(F) > {}^{3}E^{b}$, or that the 17 kK band is a spin-forbidden transition to a ${}^{1}B_{1}$ level derived from ${}^{1}D$ as this is symmetry allowed in C_{4v} . Definite assignment of the 17 kK band must await single crystal polarised spectral studies, but, unfortunately, these compounds display severe crystal twinning. ere crystal twinning.

It is interesting to note that the spectra of the above compounds are very similar to that of Ni(dienMe) $Cl₂$ ¹⁴ which is thought¹⁵ to have a structure similar to that of its cobalt(II) analog.¹⁶ In view of the differences in the geometries of NiL_4Br_2 and $Co(dienMe)Cl_2$ these results emphasize again the limitations of the use of electronic spectra for assigning structures.

Another compound with a spectrum closely resembling that of $NiL₄Cl₂$ is one of the magnetically anomalous isomers of Ni(benzimidazole) $_4Cl_2$ ¹⁷ (compound V of ref. 17). However neither $NiL₄Cl₂$ nor its bromoanalog displayed the unusual magnetic properties possessed by the benzimidazole complex, although the Curie Law was not obeyed over the range studied (Table I). our experimental results for the magnetic moments for the magnetic moments for the magnetic moments for the ma
Distribution of the magnetic moments for the magnetic moments of the magnetic moments of the magnetic moments

Our experimental results for the magnetic moments and electronic spectra of the compounds $NiL₂X₂$ $(X = Cl, Br, or I)$ are in reasonably good agreement with those reported previously,¹ except for the moment of NiL₂Cl₂ for which we find $\mu_{eff} = 3.20$ B.M. compared with the earlier¹ value of 3.41 B.M. We agree with the conclusions of Eilbeck $et al.¹$ that the bromo and iodo complexes are pseudotetrahedral

and the chloride is polymeric octahedral, but some ind the chloride is polymeric octanedral, but some features of the electronic spectra of these compounds require further consideration.

Figure 2. Reflectance spectra of:
zole)₂Cl₂; B, Nipy₂Cl₂.

 $\frac{1}{\sqrt{2}}$ It was suggested that the spectrum of $N1L_2Cl_2$ is very similar to those of related polymeric complexes such as $Ni(pyridine)_{2}Cl_{2}.^{9,10}$ However, this is not the case (Figure 2), and the differences are significant. In contrast to the pyridine complex, the spectrum of the 2-methylimidazole compound shows no detectable band splitting, even at 95[°]K. [The absence of spliting for the $A_{2g} \rightarrow I_{2g}$ transition at 6.95 kK, which s very marked for Nipy₂C₁, supports the suggestion \cdot that the weak shoulder (we observe two at 95°K) on ne low frequency side of the $A_{2g} \rightarrow I_{1g}$ (P) band is a pintorbidden band \lfloor . The implication of little departure from O_h ligand field symmetry is supported by the fact that the band energies agree closely with those expected¹⁸ for that symmetry with $\Delta \approx 7$ kK. This $\frac{1}{10}$ value is surprisingly low, being only slightly larger han that (6.6 KK) found for nickel(11) surrounded by six bridging chloride ions. Both the relatively low Δ value and the high ligand field symmetry can probably be attributed to steric repulsion between the methyl groups of the heterocyclic base and the chloride ions in the $(NiCl₂)_n$ chain, causing the Ni-N bond to be longer than usual. The steric effects may, by destroying the centre of symmetry, also explain why the spectral bands are relatively intense compared with those of e.g. Ni(pyridine)₂ $Cl₂$.

This compound appears to lie very close to the point where, in a range of closely related compounds Ni- $(\text{amine})_2 X_2$, there is a change from polymeric octahedral to tetrahedral geometry. In acetone and in solid solution in tetrahedral ZnL₂Cl₂ spectra characteristic of the pseudotetrahedral configurations were
obtained (Table I).

⁽¹¹⁾ M. Ciampolini, *ibid., 5, 35 (1966). (12) e.g. C.* Furlnni, *Coord. Ckem. Rev.,* 3, 141 (1968). (13) This order is also found for tetragonally distorted six coordinate complexes.

omplexes.

(14) dended and G. P. Speroni, *Inorg. Chem.*, 5, 45 (1966).

(15) M. Ciampolini and G. P. Speroni, *Inorg. Chem.*, 5, 45 (1966).

(16) M. Di Vaira and P. L. Orioli, *Chem. Commun.* (*London*) 590

1965).

(17)

⁽¹⁸⁾ A. D. Liehr and C. J. Ballhausen, *Ann. Phys.*, 6, 134 (1959).
(19) D. M. L. Goodgame, M. Goodgame, and M. J. Weeks, *L. Chem.*

Previous assignments' of the spectra of the pseudorevious assignments of the spectra of the pseudo-
 $\mathbf{R} \cdot \mathbf{R} = \mathbf{R} \cdot \mathbf{R} \cdot \mathbf{R} = \mathbf{R} \cdot \mathbf{R} \cdot \mathbf{R} = \mathbf{R} \cdot \mathbf{R} \cdot \mathbf{R}$ tetrahedral compounds NiL_2X_2 ($\bar{X} = Br$ or I) are also, in our view, incorrect. Citation¹ of earlier work²⁰ on the tetrahalonickelate (II) anions in apparent support of assignment of the band 5–7 kK as v_2 (³T₁ (F) \rightarrow $t_1(A_2)$ and that at ~ 10 kK as a spin-forbidden transition to a component from the $\rm{^{1}D}$ free ion term, did not take into account the changes in ligand field strength and symmetry on passing from $NiX₄²$ to approximately tetrahedral $NiN₂X$, chromophores. Nor does the intensity of the ~ 10 kK band (Figure 3) suggest its assignment as a spin forbidden band. Instead, following assignments made previously²¹ for related compounds with quinoline and benzimidazole, we assign the 10 kK band as v_2 and the broad absorption at 5–7 kK as the transition(s) to one or more components of the split³T₂ level.

igure 5. Reflectance spectra of: A, $Ni(2-m)$

On heating diamagnetic NiL& at 75" in vacua a on nearing diamagnetic is p_1 at p_2 in vacuo a purple compound with the unexpected stoichiometry $Nil_{2,5}I₂$ was obtained. The magnetic moment (Table I) is below the spin-only value for nickel(II). The μ is below the spin-only value for increasing. The gure 3) resemble those observed for some distorted, gure 3) resemble those observed for some distorted, tetrahedral nickel complexes such as Ni(2,2'-dipyridylamine) X_2 (X = Br or I),²² but with a hypsochromic band shift, and with the addition of a shoulder at \sim 22,400 $cm⁻¹$. This last corresponds quite well with the 22 kK band observed for $NiL₄L₂$, and one can rationalize the spectrum, low magnetic moment, and stoichiometry of $Nil_{3,5}I_2$ on the basis of a structure containing planar $NilA^{2+}$ and pseudotetrahedral $[NiL_3]$ ⁺ cations in 1:1 ratio. X-ray powder photographs showed that the pur-

(20) D. M. L. Goodgame, M. Goodgame, and F. A Cotton, *J. Am.*
hem. Soc., 83, 4161 (1961).
(21) D. M. L. Goodgame and M. Goodgame, *Jnorg. Chem.*, 4, 139
1965); D. M. L. Goodgame, M. Goodgame, and M. J. Weeks, *J. Chem.*

ple product was not merely a mechanical mixture con- $\frac{1}{2}$ is product was not increased a increasing interest to obtain containing unreacted $NiL₄I₂$. Attempts to obtain complexes containing the $NiL₃I⁺$ cation from solution were unsuccessful. However, ethanol solutions of $NiL₄I₂$ gave spectra similar to that of solid $NiL_{3.5}I_2$. Addition of 2-methylimidazole to these solutions caused complete conversion of the solute species to planar $NiL₄²⁺$ suggesting the presence of an equilibrium:

$$
Nil_{4}^{2+} \rightleftharpoons Nil_{3}X^{n+} + L
$$

(planar) (pseudotetrahedral)

 $M = \mathbf{W}$ may be an iodice ion or a solvent molecule. where Λ may be an iodide for or a solvent molecule. Additional support for the suggested nature of $NiL_{3,5}I₂$ is provided by the low frequency infrared spectrum (see later). On heating at 120° this compound is converted to $NiL₂I₂$. $T_1 = \frac{1}{2}$ spectrum and magnetic moment of $\frac{1}{2}$ spectrum and magnetic moment of $\frac{1}{2}$

 $\frac{1}{2}$ in the electronic spectrum and magnetic moment of $NiL₂(NO₃)₂$ both suggest that this has a distorted octahedral configuration. The spectrum of NiLCl₂ re- $\frac{1}{2}$ comparation. The spectrum of NILC₁₂ re- ϵ more that of NipyC₁₂ with a small bathochromic hand shift, and the magnetic moment is relatively $\lim_{x \to 0}$ as found π for ζ $\text{Im}(\lambda_2)$ compounds.

in contrast to the results for himalazole, cupric iodide complexes could not be obtained; instead the usual redox reaction occurred with formation of cuprous iodide and iodine. The spectrum of CuL_4Br_2 shows that it resambles $CuL_4Cl_2^{1}$ in having a tetragonal structure, whereas the CuL₂X₂ (X = Cl or Br) compounds are tetrahedral.

Vibrational Spe&u (400-90 cm-'). The vibrationviorational spectra $(400-90 \text{ cm}^{-3})$. The vibrational band frequencies of 2-methylimidazole are listed in Table II and those of its complexes in Tables II-IV. The infrared active bands at 374 and 353 cm⁻¹ in the free ligand are replaced by a single infrared and Raman active band at $380-390$ cm⁻¹ upon complexing. The band at ~ 267 cm⁻¹ is also raised in frequency in many of the complexes but its proximity to metalligand modes in some cases makes it uncertain as to whether this is a general effect.

4 : 1 *Compounds* (Table II). The F2 Co-N stretch v_1 Compounds (1 able 11). The r_2 CO-in stretch is colored to the theory (v_3) of the tetrahedral cation in CoL₄I₂ is close to the ligand band at \sim 270 cm⁻¹, and it is not certain which of the two absorptions in the 280 cm⁻¹ region may be assigned as v_3 . The infrared spectrum of ZnL₄- $(NO₃)₂$ closely resembles that of $CoL₄I₂$, and differs from those of $CoL₄(NO₃)₂$ (both forms) and NiL₄- $(NO₃)₂$ We conclude that the zinc nitrate complex contains tetrahedral $ZnL₄²⁺$ cations. The Raman spectrum of this compound has a band at 213 cm^{-1} not observed in the infrared spectrum, and this is probably due to the $A_1 \vee (Zn-N)$ mode. The infrared bands at 163 cm⁻¹ for CoL₄I₂ and at 174 cm⁻¹ for ZnL₄-
(NO₃)₂ are tentatively assigned as the F₂ (N-M-N) $T_{\rm H}$ is band at 243 cm $T_{\rm H}$ for $T_{\rm H}$ (X-Cl or Br) is

as the band at 245 cm \cdot for N1L₄ Λ ₂ (Λ = Cl or Br) is assigned as the $v(M-N)$ E mode. Although the A₁ M-N stretch is formally infrared active in C_{4v} symmetry it is either very weak or is hidden by the 280 cm⁻¹ ligand band. The 218 cm⁻¹ band for NiL₄Br₂

(23) A. B. P. Lever, *Inorg. Chem., 4, 763 (1965).* *****(24)*

Goodgame, Goodgame, Rayner-Canham 1 *Complexes of 2-Methylimidazole*

Table 1l. Infrared (IR) and Raman (R) Spectra (450-90 cm⁻¹) of 2-methylimidazole (L) and Some ML,X₂ Complexes.

Compound		cm^{-1}
L	IR	374 m, 353 s, 265 s, 163 m, 149 s, 128 w, 114 m, 96 s,
	R	268 m. 168 w. 148 vs.
$ZnL4(NO3)2$	IR	388 mbr. 275 s. 174 s.
	R	382 s. 280 s. 213 w.
CoL ₁	IR	388 s. 286 s. 277 sh. 163 s.
$Col4(NO3)2(A)$	IR	384 s. br. 280 s. 230 s. vbr. 110 s. br.
$Col4(NO3)2(B)$	IR	423 s. 383 s. 312 m. 278. s \sim 180 vbr. 110 s. br.
NiLCl,	IR	385 s. 277 s. 243 s. 135 s. br.
NiL ₄ Br ₂	IR	386 s, 281 s, 243 m, 218 m, 133 w, 111 m, 92 s.
NiL ₁ ,	IR	424 s, 400 m, 383 m, 365 m, 292 m, 280 m, \sim 260 sh, 198 w, 95 m.
	$\mathbf R$	424 wsh. 402 w. 228 m. 214 s. 196 w.
NiL(MO ₁) ₂	IR	391 s. br. 286 s. 257 m. 213 w. \sim 195 m. vbr. 110 m. br.
CuLCl ₂	IR	389 s. 283 s. 256 w. 215 m. 125 s. br.
CuL ₄ Br ₂	IR	388 s. 284 s. 260 w. 214 s. 106 s. 93 s.

Table III. Infrared (IR) and Raman (R) Spectra (90-400 cm⁻¹) of Some Tetrahedral ML₂X₂ Complexes (L = 2-methylimidazole).

sibly $v(Zn-1)$.

is assigned as $v(Ni-Br)$, involving the bromine atom more closely bound to the metal ion. The much more distant bromine atom is unlikely to give a vibrational band above 200 cm⁻¹, but instead would be expected to give absorption at very low frequency similar to a lattice mode. If the commonly observed²⁴ $v(M-Br)$ / $\nu(M-Cl)$ relationship is obeyed by these NiL₄X₂ compounds, the observation of $v(Ni-Br)$ at 218 cm⁻¹ would imply that the strong absorption at 277 cm^{-1} in NiL₄Cl₂ contains both the 2-methylimidazole band and that due to v(Ni-Cl) involving the short Ni-Cl $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$

The spectra of the tetragonal copper complexes $CuL₄X₂$ show two anion-independent bands above 150 cm^{-1} , apart from ligand bands. We assign these as the components of the $E_u v(M-N)$ mode split by departure of the CuN4 unit from D4h symmetry.

The low frequency infrared spectra of the two forms of $Col₄(NO₃)₂$ are quite different. Moreover the spectrum of the purple isomer (B) differs from that of $CoL₄I₂$ and supports the conclusions drawn from the magnetic measurements that form B does not contain tetrahedral Col_4^{2+} , despite the similarity of the electronic spectrum of this compound to that of CoL4I2. However in the absence of definite structural information assignment of the low frequency infrared bands is not really warranted.

2 : *1 Compounds.* Indentification of the two v(Mhalogen) bands for the tetrahedral compounds (Table III) was straightforward for most of them, although the higher frequency $\nu(M-Br)$ band is in the $\nu(M-N)$ region for $M = Co$, Ni, or Cu, and the absorptions observed at 241, 233, and 251 cm^{-1} respectively may contain both $v(M-Br)$ and $v(M-N)$ in these cases. Our assignment of the $A_1 \vee (Zn-I)$ mode to the band at 175 cm^{-1} is tentative, another possibility being the band at 140 cm⁻¹. Previous work²⁵ on other tetrahedral $Zn(ligand)_2I_2$ compounds favors the higher frequency band as the symmetric Zn-I stretch. However, the Raman results suggest that the lower frequency band may be $v_{symm}(Zn-I)$. The strongest band in the low frequency Raman spectrum of ZnL₂Br₂ is that at 195 cm⁻¹ (solid), and at 191 cm⁻¹ for acetone solutions. This band is polarised and is reasonably assigned to the $A_1 \vee (Zn-Br)$ mode. Although the Raman spectrum of solid ZnL_2I_2 has a band at 180 cm⁻¹, apparently corresponding to that at 175 cm^{-1} in the infrared spectrum, this band appears as only a very weak shoulder in the solution spectrum. On the other hand, the strongest Raman band in the solid state spectrum is that at 148 cm^{-1} and this also appears strongly in solution and is polarised. [For com-

⁽²⁵⁾ G. B. Deacon and J. H. S. Green, Chem. Commun. (London), 629 (1966); *Specfrochim. Ada, in press. 1.* H. S. *Green,* personal **communication.**

Table IV. Infrared Spectra *(90-400* cm-') of Some 2-methylimidazole Complexes.

NiL ₂ Cl ₂		388 m, s, br 267 sbr, \sim 225 s, vbr, \sim 180 s, vbr.
NiLCl ₂		387 mw. br. 267 m , $\sim 200 \text{ s}$, vbr.
Nil, J,		414 s, 384 s, 357 m, \sim 294 sh, 283 s, br, \sim 260 sh, 191 ms, 175 ms, 164 ms, 152 ms, 90 s, vbr.
$CoL2(NO3)2$		382 m, 286 s, br, 270 sh, 185 s, 140 m, vbr, 96 m.
NiL ₂ (NO ₃)		384 m, 306 s, 287 s, 194 m, 177 m, 100 w.
$ZnL_2(NO_3)$		386 s, 294 sh, 277 sbr, 254 sh, 170 m, \sim 125 w, vbr.
ZnL ₂ (NO ₃)	(R) a	394 w, 277 m, 237 m, 169 m.

@Raman spectrum (solid state)

parison, the F_2 and A_1 modes of the ZnI_4^{2-} ion are at 165 and 118 cm⁻¹ respectively²⁶].

Clear assignment of the $v(M-N)$ modes is not possible for many of the compounds listed in Table III. The main complication is the presence of the ligand band in the 270 cm^{-1} region and the uncertainty as to the extent this is shifted on coordination. However we do not agree with a previous suggestion¹ that this 270 cm⁻¹ band invariably masks the $\nu(M-N)$ absorptions. The bands at 242 and 226 cm⁻¹ in the infrared spectrum of ZnL_2I_2 are very probably the $v(M-N)$ bands and similar assignments may be made for bands in the $230-260$ cm⁻¹ region for the corresponding chloride and bromide, and for some of the other complexes. Identification of the $v(M-N)$ band for the bromide complexes of Co, Ni, and Cu is prevented by the presence of the higher frequency $\nu(M-Br)$ band.

Our experimental results for the low frequency in-France continues from the comarea spectrum of the polymetre, octaneoral c with those tabulated by Eilbeck et *al.'* strong, broad absorption with maxima at -225 and strong, broad absorption with maxima at \sim 225 and \sim 180 cm⁻¹. As in the case of other halide-bridged

(26) J. S. Avery, C. D. Burbridge, and D. M. L. Goodgame, Spec-

2:1 complexes.²⁴ the $\nu(M-X)$ and $\nu(M-N)$ frequencies are insufficiently resolved for clear assignment, but the infrared results support the postulated polymeric structure. The spectrum of $NiLCl₂$ is also of this type (Table IV).

*NiL*_{3.5}*I*₂. The low frequency infrared spectrum of this compound tends to support the presence of planar $NiL₄²⁺$ ions in addition to distorted tetrahedral nickel environments. In particular the spectrum has a strong band at 414 cm^{-1} and a medium band at 357 cm-' corresponding to the bands at 424 and 37 cm corresponding to the bands at 727 and
 65 cm⁻¹ for NiL I Infrared evidence concerning of the not integral control control control in the second control of the tetrahedral component is less the nature of the tetrahedral component is less certain. The band at 283 cm^{-1} is much broader and stronger than that for NiL₄I₂ (compare v_3 , $v(Co-N)$, for tetrahedral $Col4^{2+}$ at 286 cm⁻¹) and there are three medium-strong bands below 190 cm^{-1} , not shown by NiL₄I₂, in the region where $\nu(M-I)$ for a tetrahedral species might be expected.

Acknowledgments. We thank the Agricultural Research Council for financial support, and Professor D. Rogers and Miss R. S. Osborn for the X-Ray powder photographs.